
aVineas
IT Consulting OSGi JEE extender - v1.0.0

 1 Introduction

 1.1 Rationale

JEE7 has come a long way since the introduction of the Java Enterprise platform in the
1990s. In responses to development in the industry and open source projects, it moved
from a mainly monolithic “one-all” solution, it has become a set of specifications that can
be used individually, either as part of a larger JEE container (like Websphere, Jboss,
Glassfish, Weblogic) or standalone in a Java Standard Edition solution.

The Java Enterprise adopted OSGi as a possible solution some years ago and OSGi
technology is used or can be used with some of the JEE containers. However, OSGi is often
seen as an enabling technology for the container and not as a starting point for
development.
If you try to get various JEE technologies working together in an OSGi framework, your
often end up in a clutter of dependencies between projects and versions that are hard to
untangle. As a result you end up with a large amount of bundles in your target
environment. The Apache Karaf project tries to handle/solve this for you, but its scope is
much broader than the JEE standards.

 1.2 Purpose

The purpose of the JEE extender is limited, but as a result relatively simple:
• It focuses on JEE7 standards only.
• It only uses OSGi services to couple various standards together.
• It does not introduce additional interfaces for the user.
• It discourages/disables JEE techniques that are possible harmful or may lead to

unclear results in OSGi environments.

It brings the following JEE7 standards together on a standard OSGi framework:
• JPA 2.1. Via a bridge to a standard JEE persistence provider implementation

exported as service. An example for eclipselink is provided.
• JTA 1.1. Using an external or own implementation of a JEE transaction manager.
• CDI 1.2. Using an OSGi bridge to the Weld CDI reference implementation that

allows importing and exporting OSGi services via CDI-enabled bundles.
• JSF 2.2. Currently using the Mojarra JSF reference implementation and tested with

Primefaces.

All code is maintained on https://github.com/arievanwi/osgi.ee

 2 Installation

 2.1 Pre-requirements

• Java 8.

www.avineas.nl
www.avineas.org 1 / 14

http://karaf.apache.org/
https://github.com/arievanwi/osgi.ee
http://primefaces.org/
https://javaserverfaces.java.net/
http://weld.cdi-spec.org/
http://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
http://eclipse.org/eclipselink/
http://docs.oracle.com/javaee/7/api/javax/persistence/spi/PersistenceProvider.html

aVineas
IT Consulting OSGi JEE extender - v1.0.0

• The latest eclipse version with the functionality for eclipse plugin development
enabled. For example the eclipse version for JEE developers.

 2.2 Bundles

Next to this bundles are needed for:
• The OSGi framework (obvious).
• Various JEE APIs (required).
• An OSGi service component runtime like Felix SCR (required).
• An OSGi configuration manager implementation (optional, but likely to be

necessary).
• A JPA provider (in case JPA is used).
• Weld (in case CDI is used).
• Web extender and JSF bundles in case JSF is used.

A full excerpt of all these dependencies can be extracted from the repository project
“Runtime”:

• Check-out and import the project “Runtime”.
• Open the target definition file “Target.target”.
• Press “Set as target platform”.

As a result the OSGi target platform is switched to this new configuration.

The extender functionality consists of the following bundles:
• datasource.factory. Bundle that is able to create javax.sql.DataSource services

from configuration admin information. See 3.3 for more information.
• eclipselink.extender. Bundle that extends the eclipselink JPA provider to export a

PersistenceUnitProvider to the OSGi service registry. See 3.2 for more information.
• osgi.ee.extender.jpa. Extender bundle that registers entity managers for bundles

containing JPA persistence unit definitions. See 3.2 for more information.
• osgi.ee.extender.cdi. Extender bundle that processes CDI beans from bundles that

need it. See 6 for more information.
• osgi.ee.extender.web. Web extender bundle. An implementation of an OSGi web

extender as described in compendium chapter 128. See for more information 5.

 3 JPA

 3.1 JPA interfaces

JPA works around the following interfaces:
• javax.persistence.spi.PersistenceProvider, further called persistence provider.
• javax.persistences.EntityManagerFactory, further called the entity manager factory.
• javax.persistence.EntityManager, further calls the entity manager.

The entity manager factory is the central interface here and represents one persistence

www.avineas.nl
www.avineas.org 2 / 14

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html

aVineas
IT Consulting OSGi JEE extender - v1.0.0

unit, normally specified in the META-INF/persistence.xml file of a bundle. An entity
manager factory is constructed by a persistence provider, which is a vendor provided
implementation (eclipselink, hibernate) of the interface. The persistence provider interface
has methods to construct an entity manager factory from the details from the persistence
unit definition.
An entity manager is the unit of work used by the application: it provides methods to
update/insert/query the objects stored via the persistence unit.

In normal EE environments, persistence providers are created via the Java service provider
solution, entity manager factories are handled by the container and entity managers are
constructed where needed. This all doesn't work in a plain OSGi environment.

 3.2 Solution for OSGi

Needed bundles: osgi.ee.extender.jpa and eclipselink.extender.

The OSGi enterprise specification chapter 127 gives a solution how JPA should be used in
OSGi. However, it doesn't really use the application developer as main starting point, since
its endpoint is an entity manager factory while an application programmer basically uses
an entity manager. Therefore, the JPA extender bundle has some additional logic to
bridge the additional gap between the application developer and the specification.
Globally, it works as follows:

• The extender bundle tracks persistence provider implementations that are
registered in the OSGi services registry.

• The extender bundle tracks bundles that indicate the presence of one or more
persistence units via the Meta-Persistence bundle header (according to the OSGi
enterprise specification).

• It creates entity manager factory instances for the persistence units that can be
constructed with the available persistence providers and registers them as service
for the bundle specifying the persistence unit.

• It creates thread-local entity manager instances on demand to service the
application. The entity manager can be accessed via an entity manager service
that is registered for a persistence unit.

This all sounds a little complex (and maybe it is), but from an application point of view it
means that you can just reference an entity manager service from you application and
use it. Example:
Assume that you defined a persistence unit named “Orders” that allows access to Order
instances and you want to access those orders from any other bundle. This can be done
using service component annotations as follows:

@Component
public class OrderDao {
 private EntityManager entityManager;

 @Reference(target = "(osgi.unit.name=Orders)")

www.avineas.nl
www.avineas.org 3 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

 void setEntityManager(EntityManager m) {
 this.entityManager = m;
 }

 public List<Order> getOrders() {
 TypedQuery<Order> query = entityManager.createQuery(
 "select o from Order", Order.class);
 return query.getResultList();
 }
}

Note that the property “osgi.unit.name” must be used/filtered to reference the correct
persistence unit. Otherwise, you may just end up with a different persistence unit entity
manager.

 3.3 Persistence unit data sources

Persistence units need to be defined as specified in the OSGi enterprise specification. This
means that a “Meta-Persistence” header must be added to a bundle to declare it
persistence units definition files.

Persistence units use data sources to connect to a database. This can be done either via
the non-jta-datasource/jta-datasource elements or by providing the database properties
directly in the persistence description file. The second solution should not be used. In stead
a data source OSGi service should be created and used.

 3.3.1 Creating a datasource service

javax.sql.DataSource is an interface and therefore can easily be exported as OSGi
service. Normally, this is done using a JDBC connection, optionally added with connection
pooling, etc. Base of this all is a JDBC driver that is provided by your database supplier.

The OSGi enterprise specification chapter 125 specifies how to get a data source using this
specification. However, in practice no-one implements this chapter and we are just left
with a JDBC database driver for our vendor.

The bundle datasource.factory provides a solution for creating a (pooled) data source via
a configuration manager and publishing it in the service registry. This is done via the
following configuration:

• A factory pid of “datasource” or “XAdatasource” for respectively a normal
datasource or a datasource that is able to interact with a transaction manager.
The use depends on your persistence unit definition:

• If your transaction type is JTA and you therefore use the jta-data-source
definition in your persistence file, a XAdatasource is needed.

• Otherwise, you can just use “datasource”.
• jdbc.driver, jdbc.user, jdbc.password, jdbc.url. Indicate the JDBC parameters for

the data source. Standard convention.

www.avineas.nl
www.avineas.org 4 / 14

http://www.osgi.org/Specifications/HomePage

aVineas
IT Consulting OSGi JEE extender - v1.0.0

• pool.idle.min, pool.idle.max, pool.active.max, pool.wait are the connection pool
parameters for minimum idle connection, maximum idle connections, maximum
active at the same time and the wait time for a connection to become available.

• validation.query and validation.timeout specify the validation query and the
validation query timeout.

When using the org.avineas.cm.persister bundle as back-end for persistence storage, a
configuration could look as follows:
Type of service, either "XAdatasource" or "datasource"
ds.1..service.factoryPid = XAdatasource
JDBC configuration.
ds.1..jdbc.url=jdbc\:oracle\:thin\:@localhost\:1521\:XE
ds.1..jdbc.driver = oracle.jdbc.driver.OracleDriver
ds.1..jdbc.user=oratest
ds.1..jdbc.password=orapassword
Property set on the service to find it back.
ds.1..name = Orders

Note that properties not mentioned above are just copied to the service registration and
therefore can be used to filter the service.

As indicated above, the driver must be specified in the JDBC parameters. However,
drivers are not included with the bundle and must be separately attached via a fragment
bundle. The actions to take are as follows:

• Create a fragment project for your JDBC driver(s):
• New project → Plugin development → new fragment project.
• MANIFEST → Overview → Host plugin: datasource.factory.

• Put your driver jar somewhere in the project.
• Add the jar to your bundle class path:

• MANIFEST → Runtime → Classpath.

 3.3.2 Using a datasource service for a persistence unit

To reference a data source service from a persistence unit descriptor file, you can just
reference a normal or XA datasource in the respective elements in the persistence.xml file.
This is done by using the JNDI OSGi reference URL format as described in the OSGI
enterprise specification chapter 126. Although the use of JNDI itself is strongly
discouraged, the extender functionality accepts the osgi:service JNDI lookup format for
datasources in persistence description files. This format is as follows:
osgi:service/javax.sql.DataSource/<filter>
where:

• osgi:service indicates a service reference.
• javax.sql.DataSource indicates the interface to reference.
• <filter> is a standard OSGi filter.

To reference a datasource with name “OrdersDS”, the reference would become:
osgi:service/javax.sql.DataSource/(name=OrdersDS)

www.avineas.nl
www.avineas.org 5 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

A full persistence.xml for our orders persistence unit could become:
<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="Orders" transaction-type="JTA">
 <jta-data-source>
 osgi:service/javax.sql.DataSource/(name=OrdersDS)
 </jta-data-source>
 <class>orders.objects.Order</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 </persistence-unit>
</persistence>

 3.3.3 Pre-processing persistence unit definitions

During development you want to add additional logging, etc. to persistence units
definitions, or add some other options. In practice this means that you need to edit the
persistence.xml files and change them back later. Using the JPA extender, it is possible to
transform a persistence.xml file before it is used. This is done via a system property
“osgi.jpa.transformer”. For example: if you want to use file “persistence-transformer.xsl”
in /opt as a transformation, you need to start the framework with option “:
-D/opt/persistence-transformer.xsl”.

 4 JTA
The Java Transaction API specifies how to handle transactions that possibly span multiple
different resources. In practice however this is seldom used because most applications just
use one single database.

However, to use a single solution independent of the number of databases/connections
used, the extender bundle provides a TransactionManager implementation that is
exported as service and default enabled.

In normal situations, its use is as follows:
• At the start of an action (either via the web or otherwise), a transaction must be

started using TransactionManager.begin().
• If something goes wrong, the transaction must be rolled back using

TransactionManager.rollback().
• Otherwise, the transaction must be committed using

TransactionManager.commit().
For web based applications, the extender provides a web servlet filter
(osgi.jta.servlet.filter.TransactionFilter). In other situations, something alike must be provided
using a different solution.

www.avineas.nl
www.avineas.org 6 / 14

http://docs.oracle.com/javaee/7/api/javax/transaction/TransactionManager.html
http://xmlns.jcp.org/xml/ns/persistence

aVineas
IT Consulting OSGi JEE extender - v1.0.0

Alternatively, the transaction manager can be completely disabled by setting the
“service.ranking” property of CM pid “osgi.extender.jta.tm” lower than -1000. A full
example:
Transaction timeout timer. In seconds.
osgi.extender.jta.tm..timeout = 30
The ranking of the service. -1001 will disable it completely
osgi.extender.jta.tm..service.ranking = 0

 5 Web extender
Web applications do not automatically run in an OSGi container. The reason for this is that
web applications have a specific format that need to be processed by a JEE aware
container. That functionality is not provided by OSGi.

The OSGi enterprise specification chapter 128 defines how to deal with web applications
in an OSGi environment. The OSGi web extender provided by this project conforms to that
specification with some restrictions:

• It does not convert standard war files to bundles. As such, the war must be a WAB
(web application bundle) and as such a normal OSGI bundle.

• It does not provide the webbundle URL handling.
• It does not publish events as a result of the extending of the WABs.
• It is not tested for JSPs (since JSPs are assumed to be outdated).

 5.1 Environment set-up

To be able to use the web extender, the following requirements need to be met:
• The OSGi environment must provide a standard HTTP service, as specified by

chapter 102 of the compendium/enterprise specification. Bundles that provide this
functionality are provide by both the Felix (see note) and Eclipse equinox projects.

• A service component runtime (like Felix SCR) to start the components in the bundle.

Note on using the Felix HTTP service:
The Felix HTTP service is a one-stop solution that provides various chapters of the
compendium/enterprise specification related to HTTP handling. It therefore conflicts in
some way with the implementation here (because it also implements chapters 128 and
chapter 140 of the specifications). Therefore, when using Felix, replace “Web-
ContextPath” with “X-Web-ContextPath” below and be aware that event listeners will be
called from the Felix implementation as well.

 5.2 Declaring a web bundle

To set-up a web-aware bundle, a bundle must contain the “Web-ContextPath” header,
like:
Web-ContextPath: /MyContext

This means that the bundle is servicing requests to the path /MyContext on the HTTP port
where the OSGI HTTP service is configured for.

www.avineas.nl
www.avineas.org 7 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

When the bundle is started, it is picked up, configured and an OSGi service is registered for
the created ServletContext as specified.

To add servlets to the context, there are two options:
• Creating a web.xml file (the normal JEE way).
• Registering servlets in the OSGi service registry.

 5.2.1 Web.xml

Bundles that declare a web context in the bundle headers as indicated above, may have
a /WEB-INF/web.xml file declaring the web application details. This file is automatically
picked up by the extender bundle to configure the servlet context. The following
information is used from the file:

• Servlet context parameters (context-param elements).
• Servlet definitions and mapping (servlet and servlet-mapping elements).
• Listener definitions (listener elements).
• Filter definitions and mapping (filter and filter-mapping elements).
• Welcome files and error files (welcome-file and error-page elements).
• Session timing parameters (session-config elements).

All other elements are silently ignored and as a result not all sub-elements from elements
that are parsed are used (like servlet role definitions which are security related).

 5.2.2 Web context definition service

Declaring a web.xml file means that only one context can be defined by a bundle. In
normal situations this is sufficient. However, it is possible to add additional context
definitions by registering an OSGi service of type osgi.extender.web.WebContextDefinition.
This basically adds a web context to the bundle as is normally done with the combination
Web-ContextPath bundle header and web.xml file. More specific: this is exactly how the
extender handlers the bundle header/web.xml combination.

 5.2.3 Servlet and filter service registrations

The disadvantage of declaring servlets, filters and listeners in a file is that the classes must
be self-supporting: they are just instantiated via the default constructor and should be
able to handle that. In some cases this is insufficient, for example if you want to use OSGi
services in your servlet/filter which is much more simple using dependency injection.

For these cases, next to the declarations in the context file, servlets and filter that are
registered as OSGi services are also pick-up by the web extender if they:

1. Have a web-context service property set.
2. Have the standard annotations from the servlet specification (WebServlet or

WebFilter) so their mapping can be determined.

Ad 1.
The web-context service property is used by the extender to determine for which contexts

www.avineas.nl
www.avineas.org 8 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

the servlets/filters must apply. The value must be regex expression that match the context.

Ad 2.
The servlet specification indicates that servlet and filter classes can have annotations and
are automatically picked up from the class path. In OSGi environments classpath
scanning is bad practice and the way to do this is by using OSGi services. As a result, the
extender processes these annotations on OSGi services.

Example:
@Component(service = Servlet.class, property =
WebContextDefinition.WEBCONTEXTPATH + "=/Test")
@WebServlet(name = "Service", urlPatterns = "/xxx/*")
public class SimpleServlet extends HttpServlet {

Declares a servlet that services on URLS “/Test/xxx/*” (context path /Test, URL pattern
withing the context /xxx/*).

The extender will make sure that always the init and destroy methods of the servlets/filters
are called independent of the starting order of the services.

Note: care should be taken if a fitler or servlet context path service property matches
more that one context. In those cases the init and destroy methods are called for all
matching contexts and requests are dispatched for multiple contexts, possibly at the same
time.

 5.2.4 Listener services

Listeners can also be defined as OSGi services. Only listeners with the context-path service
property set will be processed and called.
The extender will only call services that are registered at the time an event occurs. This is
something to regard while writing listeners as services: it is for example very well possible
that a session created event is not received by a SessionListener because the listener was
not up at the time the event occurred.

 5.3 JSF and classpath scanning

JSF uses two types of configuration:
• faces-config.xml files. Contain declarations of the configuration needed by

components, etc.
• Facelets tag libraries. Used to extend the standard JSF components.

Unfortunately, to find these type of configurations, the JSF implementations make heavily
use of classpath scanning. As already indicated earlier: this is a pain with OSGi and should
be avoided when possible.
To still allow definitions from components to be automatically added for Web bundles, the
extender treats the resource path /WEB-INF/classes/META-INF in a special way: it remaps
this path to the META-INF directories of the bundles the web bundle depends on. As a

www.avineas.nl
www.avineas.org 9 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

result, these files can be found by the JSF implementation.

For example:
Suppose a web bundle uses Primefaces JSF components. The primefaces bundle contains
in the /META-INF directory the following files:

• /META-INF/faces-config.xml (a faces configuration file)
• /META-INF/primefaces-p.taglib.xml and /META-INF/primefaces-pm.taglib.xml (tag

library definitions).
These files can be reached from the servlet context via the paths:
/WEB-INF/classes/META-INF/faces-config.xml, /WEB-INF/classes/META-INF/primefaces-
p.taglib.xml and /WEB-INF/classes/META-INF/primefaces-pm.taglib.xml.

Of course this may cause problems when bundles contain the same file names in their
META-INF directories. Fortunately, it appears that implementations prefer to use the class
loader for loading resources if the name of the resource is known in advance. As a result,
the class loader is able to differentiate by returning different URLs for the files that would
map to the same name in the WEB-INF/classes/META-INF namespace.

Note that the extender only remaps resources from bundles that are directly referenced
from the bundle declaring the web context (for example via Import-Package or Require-
Bundle manifest headers).

 6 CDI
The Contexts and Dependency Injection specification provides the JEE standard for
dependency injection. Its reference implementation is done by the Jboss Weld project.
CDI is the suggested JEE7 approach for declaring beans that are used by JSF, but it can
also be used without a web part.

The standard Java interface for CDI is the BeanManager interface, further referred to as
bean manager. Luckily however, as an application programmer you don't use that
interface much (or at all). However, it is mentioned here because bean manager services
are published for every bundle that is CDI-extended by the extender bundle.

The following chapters describe how to enable your bundle for CDI extension and how to
use and publish OSGi services in a CDI environment.

 6.1 Enable a bundle for CDI extension

To enable a bundle for processing its contents for CDI bean creation, a specific
requirement must be set in the bundle header:
Require-Capability: osgi.extender; filter:="(osgi.extender=osgi.cdi)"

This requires an extender of type “osgi.cdi” which is provided by the extender bundle.

A bundle with this requirement does not need to provide a beans.xml file.

www.avineas.nl
www.avineas.org 10 / 14

http://docs.oracle.com/javaee/7/api/javax/enterprise/inject/spi/BeanManager.html

aVineas
IT Consulting OSGi JEE extender - v1.0.0

 6.2 Using OSGi services in beans

A CDI bundle can import services from the OSGi service registry by using the
@ServiceReference qualifier (from package osgi.cdi.annotation) at an injection point.
Example:
@Named
@ApplicationScoped
public class OrderView {

@Inject @ServiceReference(filter="(source=local)")
private OrderDao dao;

This indicates that an OrderDao service with property “source” set to “local” must be
injected. The “filter” property of the annotation is optional, but allows you to narrow down
the selected service via a standard OSGi service property filter.

Next to normal singleton services, it is also possible to inject a collection of services using
this annotation. For example:
public class OrderView {

@Inject @ServiceReference
private Collection<OrderDao> daos;

Both solutions are backed by a proxy, so even for long lasting scopes like
ApplicationScope, the references always result in the actual (set of) available services.

As an additional annotation parameter, a timeout value can be specified that indicates
the time to wait for services to become available in case they are not available when a
method on the reference is called. In normal situations, the default behaviour is fine
(causing a object reference to wait for a small time and collections to perform the
operation on an empty list immediately).

Note: service references must be interfaces.

 6.3 Exporting beans as OSGi services

To mark a bean for export as service in the OSGi service registry, a class must be
annotated with the @Service annotation (from package osgi.cdi.annotation).
Example:
@ApplicationScoped
@Service(properties = "source=local")
public class OrderDaoStub implements OrderDao {

This indicates that a service must be exported for this bean with service property “source”
set to “local”. The properties are optional and may be a list of “key=value” strings that
follow the same conventions as the properties that can be declared on Declarative
Service components (see compendium specification). This means that it is possible to
specify the type of the properties, like: “service.ranking:Integer=1”.

Services can only be exported from global scopes, meaning application scope or

www.avineas.nl
www.avineas.org 11 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

component scope (@ComponentScoped annotation, defined in osgi.cdi.annotations, see
6.5). The bean will be registered In the OSGi service registry for all the Java interfaces that
the bean implements.

 6.4 RequestScoped and SessionScoped beans

CDI defines scopes for requests and session, meaning that beans defined at this scope
remain available during either the complete request or the user session. To make the CDI
container aware about when to start and end requests and sessions, an (OSGi service)
interface is defined by the extender that can be used to start and end scopes and set the
right scope for a specific thread. This interface is defined by the
osgi.extender.cdi.scopes.ExtenderContext interface. It is normally not directly used by
applications, but used via the ScopeListener class that should be declared as servlet
listener in case the session and scopes are used in web applications. Like:
 <listener>
 <listener-class>osgi.extender.cdi.scopes.ScopeListener</listener-class>
 </listener>
in WEB-INF/web.xml.

 6.5 Additional scopes

The CDI extender defines, next to the standard scopes, the following additional scopes:
• ComponentScoped. Indicates an additional normal scope. In practice the usage is

hardly different from the standard ApplicationScoped scope, but beans in this
scope are eagerly instantiated (in contrast to normal application scope beans
which are loaded on demand). This scope can be used in the case a component
needs to be initialized at startup of the CDI container. Note that beans that are
annotated as OSGi services are automatically eagerly instantiated, even if they are
in application scope.

• ViewScoped. A CDI extension to mimic the ViewScoped scope as known from JSF.
IView scoped means that beans defined in this scope will remain active for the
specific page until either the session times out or the user explicitly destroys the
current page (only works in JSF environments). In normal situations this means that
posts/gets to the same page will have a consistent bean view, for example to
fetch/update data via Ajax calls.

The scopes are defined in the package osgi.cdi.annotation and are handled via the
servlet listener as defined in 6.4.

 7 JSF
JSF uses Java expression language to reference beans for displaying information and
executing actions on pages. With JEE7, these beans can be any bean managed in CDI,
which practically removes the need of “JSF beans” from earlier specification versions.
Therefore, the assumption is that beans referenced in JSF refer to beans in the CDI
container.

In JEE containers, the linking between JSF and CDI is done by the (JEE) container. In OSGi

www.avineas.nl
www.avineas.org 12 / 14

aVineas
IT Consulting OSGi JEE extender - v1.0.0

this functionality is performed by the CDI extender bundle.

 7.1 Set-up

In a normal JSF application, the Faces implementation automatically looks for tag libraries
and faces-config.xml files in the META-INF directory in the jars on the classpath of a web
application. In an OSGi environment the META-INF directory is not exported and therefore
this set-up does not work.

Chapter 128 of the OSGi enterprise specification specifies however how web applications
can run in an OSGi environment. An implementation of this chapter is a pre-requirement
for working with JSF. Possible solutions are:

• Pax-Web. A combination of bundles that automatically extends a web bundle with
the tag libraries and faces-config files needed for JSF application: it locates these
files in bundles that are referenced by the web application and adds them to the
servlet parameters.

• The Web Extender that is part of this project, see 5.
Both implementations have been tested.

Since normally the scope listeners and CDI are also required for a JSF application, the
OSGi container creates a dependency from the JSF based web application bundle to the
CDI extender bundle. As a result, automatically the faces-config.xml from the extender
bundle is detected and processed by the JSF implementation. This completes all the
necessary work for integrating JSF with CDI. However, it also requires additional package
imports by the web bundle: osgi.cdi.faces and osgi.jta.faces.

 7.2 Dynamic extension

Writing one Web Application Bundle (WAB) for JSF is simple. However, the interesting part
of using OSGi comes from the fact that bundles can come and go and that these bundles
can dynamically extend functionality provided to the set-up.

As a result it is possible to extend the functionality of a JSF web application dynamically by
simply adding bundles that follow that extension pattern. This is done as follows:

1. Create the pages, resources, etc. needed for the extension as you would normally
do with a JSF application and store these resources somewhere in your bundle.

2. Define the necessary beans for the pages, etc. using CDI annotations.
3. Define the bundle as a CDI bundle, see before.
4. Define the resources (pages, library contents, etc.) to be exported for usage by the

JSF application. This is done by adding a “Bundle-Resources” header to the bundle
specifying the resources to export.

Example:
Suppose you created a new page “bla.xhtml” and want to navigate to this page from
the main application which is a different bundle. In that case you would:

• Place “bla.xhtml”, say, in resources/pages below your bundle.

www.avineas.nl
www.avineas.org 13 / 14

https://ops4j1.jira.com/wiki/display/paxweb/Pax+Web

aVineas
IT Consulting OSGi JEE extender - v1.0.0

• Write the bean classes for the page as you would normally do.
• Put the following headers in the manifest file:

• Require-Capability: osgi.extender;
 filter:=”(osgi.extender=osgi.cdi)”
(for enabling CDI).

• Bundle-Resources: resources
(to indicate that the directory “resources” should be exported as root of the
resource directory).

It is possible to specify multiple locations for different kind of files, for example:
Bundle-Resources: resources, css=library/css
to indicate that the “css” library can be found in the library/css directory.

Note that the default behaviour is to allow the (main) web application access to all bean
managers of all CDI extended bundles and to allow access to all exported resources from
all bundles. This can be limited by filtering on:

• The bundle symbolic name, or
• The bundle category.

These headers are copied as service attributes to the exported interfaces and can be
filtered on using the “osgi.extender.cdi.faces.filter” context init parameter:
 <context-param>
 <description>Filter of resources/CDI bean containers</description>
 <param-name>osgi.extender.cdi.faces.filter</param-name>
 <param-value>(Bundle-Category=*web-group*)</param-value>
 </context-param>

This allows for multiple web applications to run in one OSGi container without interfering
each other.

 8 Thanks
This project would not have been possible without:

• Partial sponsoring from (Imtech) Traffic and Infra and testing in two projects there.
• Testing parts of the extender at Fujifilm Manufacturing Europe.

www.avineas.nl
www.avineas.org 14 / 14

	1 Introduction
	1.1 Rationale
	1.2 Purpose

	2 Installation
	2.1 Pre-requirements
	2.2 Bundles

	3 JPA
	3.1 JPA interfaces
	3.2 Solution for OSGi
	3.3 Persistence unit data sources
	3.3.1 Creating a datasource service
	3.3.2 Using a datasource service for a persistence unit
	3.3.3 Pre-processing persistence unit definitions

	4 JTA
	5 Web extender
	5.1 Environment set-up
	5.2 Declaring a web bundle
	5.2.1 Web.xml
	5.2.2 Web context definition service
	5.2.3 Servlet and filter service registrations
	5.2.4 Listener services

	5.3 JSF and classpath scanning

	6 CDI
	6.1 Enable a bundle for CDI extension
	6.2 Using OSGi services in beans
	6.3 Exporting beans as OSGi services
	6.4 RequestScoped and SessionScoped beans
	6.5 Additional scopes

	7 JSF
	7.1 Set-up
	7.2 Dynamic extension

	8 Thanks

